Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.360
Filtrar
1.
PLoS One ; 19(4): e0297738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626108

RESUMO

The nucleus preserves the genomic DNA of eukaryotic organisms and maintains the integrity of the cell by regulating the transport of molecules across the nuclear membrane. It is hitherto assumed that small molecules having a size below the passive permeability limit are allowed to diffuse freely to the nucleus while the transport of larger molecules is regulated via an active mechanism involving energy. Here we report on the kinetics of nuclear import and export of dextran molecules having a size below the passive permeability limit. The studies carried out using time-lapse confocal fluorescence microscopy show a clear deviation from the passive diffusion model. In particular, it is observed that the steady-state concentration of dextran molecules inside the nucleus is consistently less than the concentration outside, in contradiction to the predictions of the passive diffusion model. Detailed analysis and modeling of the transport show that the nuclear export rates significantly differ from the import rates, and the difference in rates is dependent on the size of the molecules. The nuclear export rates are further confirmed by an independent experimental study where we observe the diffusion of dextran molecules from the nucleus directly. Our experiments and transport model would suggest that the nucleus actively rejects exogenous macromolecules even below the passive permeability limit. This result can have a significant impact on biomedical research, especially in areas related to targeted drug delivery and gene therapy.


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Dextranos/metabolismo , Transporte Ativo do Núcleo Celular , Difusão
2.
PLoS One ; 19(4): e0301432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626169

RESUMO

Diffusion within extracellular matrix is essential to deliver nutrients and larger metabolites to the avascular region of the meniscus. It is well known that both structure and composition of the meniscus vary across its regions; therefore, it is crucial to fully understand how the heterogenous meniscal architecture affects its diffusive properties. The objective of this study was to investigate the effect of meniscal region (core tissue, femoral, and tibial surface layers) and molecular weight on the diffusivity of several molecules in porcine meniscus. Tissue samples were harvested from the central area of porcine lateral menisci. Diffusivity of fluorescein (MW 332 Da) and three fluorescence-labeled dextrans (MW 3k, 40k, and 150k Da) was measured via fluorescence recovery after photobleaching. Diffusivity was affected by molecular size, decreasing as the Stokes' radius of the solute increased. There was no significant effect of meniscal region on diffusivity for fluorescein, 3k and 40k dextrans (p>0.05). However, region did significantly affect the diffusivity of 150k Dextran, with that in the tibial surface layer being larger than in the core region (p = 0.001). Our findings contribute novel knowledge concerning the transport properties of the meniscus fibrocartilage. This data can be used to advance the understanding of tissue pathophysiology and explore effective approaches for tissue restoration.


Assuntos
Dextranos , Menisco , Animais , Suínos , Dextranos/metabolismo , Menisco/metabolismo , Meniscos Tibiais/fisiologia , Fibrocartilagem/metabolismo , Fluoresceínas/metabolismo
3.
Fluids Barriers CNS ; 21(1): 28, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532513

RESUMO

Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.


MAIN POINTS: Solute clearance is reduced in mice lacking AQP4 Polarization of AQP4 to the endfeet may have a greater impact on clearance of large versus small molecules Clearance of large but not small solutes is correlated with age within adult age.


Assuntos
Dextranos , Sistema Glinfático , Animais , Camundongos , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Dextranos/metabolismo , Sistema Glinfático/metabolismo
4.
Dev Comp Immunol ; 155: 105158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467323

RESUMO

This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.


Assuntos
Bacillus , Dictyostelium , Leuconostoc mesenteroides , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Resistência à Doença , Muramidase/metabolismo , Leuconostoc , Dextranos/metabolismo , Vibrio parahaemolyticus/fisiologia , Dieta , Imunidade Inata
5.
Carbohydr Polym ; 332: 121897, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431408

RESUMO

Cancer multidrug resistance (MDR) dramatically hindered the efficiency of standard chemotherapy. Mitochondria are highly involved in the occurrence and development of MDR; thus, inducing its malfunction will be an appealing strategy to treat MDR tumors. In this paper, a natural polysaccharides-based nanoplatform (TDTD@UA/HA micelles) with cell and mitochondria dual-targeting ability was facilely fabricated to co-deliver ursolic acid (UA) and doxorubicin (DOX) for combinatorial MDR therapy. TDTD@UA/HA micelles featured a spherical morphology, narrow size distribution (∼140 nm), as well as favorable drug co-loading capacity (DOX: 8.41 %, UA: 9.06 %). After hyaluronic acid (HA)-mediated endocytosis, the lysosomal hyaluronidase promoted the degradation of HA layer and then the positive triphenylphosphine groups were exposed, which significantly enhanced the mitochondria-accumulation of nano micelles. Subsequently, DOX and UA were specifically released into mitochondria under the trigger of endogenous reactive oxygen species (ROS), followed by severe mitochondrial destruction through generating ROS, exhausting mitochondrial membrane potential, and blocking energy supply, etc.; ultimately contributing to the susceptibility restoration of MCF-7/ADR cells to chemotherapeutic agents. Importantly, TDTD@UA/HA micelles performed potent anticancer efficacy without distinct toxicity on the MDR tumor-bearing nude mice model. Overall, the versatile nanomedicine represented a new therapeutic paradigm and held great promise in overcoming MDR-related cancer.


Assuntos
Micelas , Neoplasias , Humanos , Animais , Camundongos , 60576 , Ácido Hialurônico/farmacologia , Dextranos/metabolismo , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Polímeros/metabolismo , Células MCF-7 , Mitocôndrias , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
6.
World J Microbiol Biotechnol ; 40(4): 114, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418710

RESUMO

Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 µg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.


Assuntos
Leuconostoc mesenteroides , Animais , Ovinos , Dextranos/metabolismo , Dextranase/química , Dextranase/metabolismo , Manitol/metabolismo , Mali , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Sacarose/metabolismo , Vitaminas/metabolismo , Leuconostoc/metabolismo
7.
mBio ; 15(3): e0259923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376161

RESUMO

The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE: Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Peso Molecular , Bacteroides/metabolismo , Dextranos/metabolismo , Trato Gastrointestinal/microbiologia , Polissacarídeos/metabolismo , Amido
8.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38219027

RESUMO

Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1 mL injections of iron dextran (200 mg Fe/mL). All piglets in the litter were administered the first 1 mL injection < 24 h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ±â€…0.13 kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200 mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.


Iron deficiency anemia (IDA) in neonatal piglets is a problem that occurs unless there is intervention with exogenous iron. The most common method to prevent IDA is with an iron injection within 48 h of birth. However, the iron from the first injection will only support normal iron status in the piglets for ~4 kg of growth. As a result, with faster-growing piglets and larger litters, many piglets weaned today are iron deficient which results in slower growth and poor immunity. Pigs never fully recover nor grow at the same rate as those that have sufficient iron status. The aim of this study was to evaluate the effects of one or two injections of iron dextran on the differences in gene expression and metabolic pathway changes in the small intestine and liver of nursing piglets. At weaning, samples of liver and duodenum underwent genome-wide RNA sequencing. The data obtained were statistically analyzed to determine which genes and metabolic pathways were affected. There were 362 and 435 genes significantly changed in the liver and duodenum, respectively, due to a second dose of iron dextran on day 7 after birth.


Assuntos
Dextranos , Ferro , Animais , Feminino , Suínos , Ferro/metabolismo , Desmame , Dextranos/metabolismo , Claudina-1/metabolismo , Claudina-2/metabolismo , Lactação , Complexo Ferro-Dextran , Fígado/metabolismo , Duodeno/metabolismo , RNA Mensageiro/metabolismo , Ureia/metabolismo , Expressão Gênica
10.
J Am Heart Assoc ; 13(3): e032533, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240234

RESUMO

BACKGROUND: Elevated inflammatory cytokines in the periphery have been identified as active contributors to neuroinflammation and sympathetic overactivity in heart failure (HF). Yet, the exact mechanisms by which these cytokines breach the blood-brain barrier (BBB) to exert their effects on the brain remain elusive. Interleukin 17A has been linked to BBB disruption in various neurologic disorders, and its levels were significantly augmented in circulation and the brain in HF. The present study aimed to determine whether the BBB integrity was compromised within the hypothalamic paraventricular nucleus (PVN), and if so, whether interleukin 17A contributes to BBB disruption in myocardial infarction-induced HF. METHODS AND RESULTS: Male Sprague-Dawley rats underwent coronary artery ligation to induce HF or sham surgery. Some HF rats received bilateral PVN microinjections of an interleukin 17 receptor A small interfering RNA or a scrambled small interfering RNA adeno-associated virus. Four weeks after coronary artery ligation, the permeability of the BBB was evaluated by intracarotid injection of fluorescent dyes (fluorescein isothiocyanate-dextran 10 kDa+rhodamine-dextran 70 kDa). Compared with sham-operated rats, HF rats exhibited an elevated extravasation of fluorescein isothiocyanate-dextran 10 kDa within the PVN but not in the brain cortex. The plasma interleukin 17A levels were positively correlated with fluorescein isothiocyanate 10 kDa extravasation in the PVN. The expression of caveolin-1, a transcytosis marker, was augmented, whereas the expression of tight junction proteins was diminished in HF rats. Interleukin 17 receptor A was identified within the endothelium of PVN microvessels. Treatment with interleukin 17 receptor A small interfering RNA led to a significant attenuation of fluorescein isothiocyanate 10 kDa extravasation in the PVN and reversed expression of caveolin-1 and tight junction-associated proteins in the PVN. CONCLUSIONS: Collectively, these data indicate that BBB permeability within the PVN is enhanced in HF and is likely attributable to increased interleukin 17A/interleukin 17 receptor A signaling in the BBB endothelium, by promoting caveolar transcytosis and degradation of tight junction complexes.


Assuntos
Barreira Hematoencefálica , Fluoresceína-5-Isotiocianato , Interleucina-17 , Infarto do Miocárdio , Núcleo Hipotalâmico Paraventricular , Transdução de Sinais , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Caveolina 1/metabolismo , Citocinas/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Insuficiência Cardíaca , Interleucina-17/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos Sprague-Dawley , Receptores de Interleucina-17/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Life Sci ; 340: 122424, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242497

RESUMO

Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.


Assuntos
Colite , Flavonas , Doenças Inflamatórias Intestinais , Sulfatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
12.
Fluids Barriers CNS ; 21(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178155

RESUMO

It has been proposed that cerebrospinal fluid (CSF) can enter and leave the retina and optic nerve along perivascular spaces surrounding the central retinal vessels as part of an aquaporin-4 (AQP4) dependent ocular 'glymphatic' system. Here, we injected fluorescent dextrans and antibodies into the CSF of mice at the cisterna magna and measured their distribution in the optic nerve and retina. We found that uptake of dextrans in the perivascular spaces and parenchyma of the optic nerve is highly sensitive to the cisternal injection rate, where high injection rates, in which dextran disperses fully in the sub-arachnoid space, led to uptake along the full length of the optic nerve. Accumulation of dextrans in the optic nerve did not differ significantly in wild-type and AQP4 knockout mice. Dextrans did not enter the retina, even when intracranial pressure was greatly increased over intraocular pressure. However, elevation of intraocular pressure reduced accumulation of fluorescent dextrans in the optic nerve head, and intravitreally injected dextrans left the retina via perivascular spaces surrounding the central retinal vessels. Human IgG distributed throughout the perivascular and parenchymal areas of the optic nerve to a similar extent as dextran following cisternal injection. However, uptake of a cisternally injected AQP4-IgG antibody, derived from a seropositive neuromyelitis optica spectrum disorder subject, was limited by AQP4 binding. We conclude that large molecules injected in the CSF can accumulate along the length of the optic nerve if they are fully dispersed in the optic nerve sub-arachnoid space but that they do not enter the retina.


Assuntos
Dextranos , Neuromielite Óptica , Camundongos , Humanos , Animais , Dextranos/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Neuromielite Óptica/metabolismo , Aquaporina 4/metabolismo , Autoanticorpos/metabolismo
13.
Int Immunopharmacol ; 128: 111499, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232535

RESUMO

BACKGROUND AND AIMS: S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS: The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS: In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS: In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.


Assuntos
Colite Ulcerativa , Colite , Sulfatos , Animais , Camundongos , Colite/induzido quimicamente , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana/farmacologia , Dextranos/efeitos adversos , Dextranos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo
14.
Fitoterapia ; 172: 105744, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952762

RESUMO

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Franquincenso , Óleos Voláteis , Sulfatos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , NF-kappa B/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Dextranos/uso terapêutico , Franquincenso/metabolismo , Franquincenso/farmacologia , Franquincenso/uso terapêutico , Óleos Voláteis/farmacologia , RNA-Seq , Modelos Animais de Doenças , Estrutura Molecular , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Colo/metabolismo , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico
15.
J Nutr ; 154(1): 121-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952777

RESUMO

BACKGROUND: Previously, we assessed the impact of restrictive diets, including caloric restriction (CR), intermittent fasting (IF), or fasting-mimicking diet (FMD), on a healthy gastrointestinal tract. We revealed that each of the diets shows anti-inflammatory outcomes. OBJECTIVE: The current study aimed to verify the diets' applicability in treating colitis. METHODS: We exposed a mouse model with mild chronic dextran sodium sulfate (DSS)-induced colitis to ad libitum control feeding, CR, IF, or FMD. The collected samples were analyzed for markers of inflammation. RESULTS: The diets reduced DSS-triggered increases in spleen weight and myeloperoxidase (MPO) activity. Diet intervention also influenced occludin levels, small intestine morphology, as well as cytokine and inflammatory gene expression, mainly in the mucosa of the proximal colon. The diets did not reverse DSS-enhanced gut permeability and thickening of the colon muscularis externa. Concerning inflammatory gene expression, the impact of DSS and the dietary intervention was limited to the colon as we did not measure major changes in the jejunum mucosa, Peyer's patches, and mesenteric lymph nodes. Further, rather modest changes in the concentration of intestinal bile acids were observed in response to the diets, whereas taurine and its conjugates levels were strongly affected. CONCLUSIONS: Despite the differences in the dietary protocol, the tested diets showed very similar impacts and, therefore, may be interchangeable when aiming to reduce inflammation in the colon. However, FMD showed the most consistent beneficial impact.


Assuntos
Colite , Dextranos , Sulfatos , Masculino , Animais , Camundongos , Dextranos/efeitos adversos , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Dieta , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
16.
J Nutr Biochem ; 123: 109493, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871768

RESUMO

This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. C57BL/6 mice were assigned to four groups: 1) NC group, normal mice fed the AIN-93M diet; 2) FRB group, normal mice fed a diet supplemented with 5% FRB; 3) NCD group, DSS-treated mice fed AIN-93M; 4) FRBD group, DSS-treated mice fed a 5% FRB-supplemented diet. DSS was administered for 5 d and followed by 5 d for recovery. At the end of the experiment, mice were sacrificed. Their blood and intestinal tissues were collected. Results showed that there were no differences in colonic biological parameters and function between the NC and FRB groups. Similar fecal microbiota diversity was noted between these two groups. Compared to the non-DSS-treated groups, DSS administration led to increased intestinal permeability, enhanced inflammatory cytokine production and disease severity, whereas tight junctions and AhR, interleukin (IL)-22 expressions were downregulated, and the ILC3 population had decreased. Also, gut microbiota diversity differs from the non-DSS-treated groups and more detrimental bacterial populations exist when compared to the FRBD group. FRB supplementation in DSS-treated mice attenuated fecal microbial dysbiosis, decreased intestinal permeability, improved the barrier integrity, upregulated AhR and IL-22 expression, maintained the ILC3 population, and pathologically mitigated colonic injury. These findings suggest enhanced ILC3- and AhR-mediated functions may be partly responsible for the anti-colitis effects of FRB supplementation in DSS-induced colitis.


Assuntos
Colite , Oryza , Camundongos , Animais , Imunidade Inata , Dextranos/efeitos adversos , Dextranos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colo/metabolismo , Suplementos Nutricionais , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças
17.
J Med Food ; 27(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38156815

RESUMO

Chronic inflammation is a major risk factor for cancer. Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, ultimately leading to a breakdown of intestinal barrier function. Clematis florida var. plena is a folk prescription used to treat inflammation and rheumatism in She pharmacy. The bioactivity of C. florida var. plena is primarily due to triterpene saponins. Huzhangoside C (HZ) is an active component of C. florida var. plena. In this study, the anti-inflammatory effect of HZ on a mouse colitis model induced by dextran sulfate sodium (DSS) was investigated. Result indicated a notable reduction in body weight loss and colon length shortening in HZ-mediated mice compared to DSS-stimulated control mice. Furthermore, inflammatory signaling mechanisms involving interleukin-6 and tumor necrosis factor-α were suppressed in HZ-treated mice. HZ treatment significantly suppressed the expression of nuclear factor kappa B (NF-κB), STAT3, and iNOS in colon tissue. After HZ treatment, malondialdehyde and nitric oxide levels were significantly decreased, while Nrf-2, superoxide dismutase, and glutathione expression levels were notably improved. The result indicated that HZ could activate the Nrf-2 signal cascade, inhibit the expression of NF-κB, eNOS, and STAT3, and enhance the intestinal barrier function of DSS stimulated ulcerative colitis intestinal injury. The results suggest that HZ is potential anti-inflammatory agent for treating IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Sulfatos , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Dextranos/efeitos adversos , Dextranos/metabolismo , China , Etnicidade , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo , Modelos Animais de Doenças
18.
J Agric Food Chem ; 71(49): 19501-19515, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039336

RESUMO

In this study, we investigated the protective mechanism of walnut-derived peptide LPLLR (LP-5) against cognitive impairment induced in a dextran sodium sulfate (DSS)-induced colitis mouse model, with emphasis on the microbiota-gut-brain axis (MGBA). The results revealed that LP-5 could improve the learning ability and memory of mice with cognitive impairment and mitigate colitis symptoms, including weight loss, bloody stools, colon shortening, and histopathological changes. Additionally, LP-5 protected the integrity of the intestinal barrier by promoting the expression of tight junction proteins (TJs) while attenuating colonic inflammation by suppressing proinflammatory cytokine and epithelial cell apoptosis. Western blotting indicated that LP-5 treatment suppressed the inflammatory NF-κB/MLCK/MLC signaling pathway activity. Furthermore, LP-5 ameliorated hippocampal neuron damage and protected blood-brain barrier (BBB) integrity by downregulating microglia marker protein Iba-1, increasing TJ protein expression, and restoring the deterioration of synaptic proteins. Importantly, 16S rRNA sequencing results indicated that LP-5 reshaped the abundance of a wide range of gut microbiota at the phylum and genus levels, with increased Prevotella and Akkermansia associated with tryptophan (TRP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). These findings suggest that LP-5 could maintain intestinal barrier and BBB integrity, reverse gut dysbiosis, and improve learning and memory ability in colitis mice, providing novel insights into alterations of gut microbes in colitis and a potential new mechanism by which it causes cognitive impairment.


Assuntos
Disfunção Cognitiva , Colite , Juglans , Animais , Camundongos , Dextranos/metabolismo , Eixo Encéfalo-Intestino , RNA Ribossômico 16S , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo/metabolismo , Citocinas/metabolismo , Serotonina/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086612

RESUMO

AIMS: This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS: The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS: PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.


Assuntos
Antissépticos Bucais , Streptococcus mutans , Humanos , Antissépticos Bucais/farmacologia , Dextranos/metabolismo , Dextranos/farmacologia , Clorexidina/farmacologia , Biofilmes
20.
Gen Physiol Biophys ; 42(6): 507-519, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37994427

RESUMO

We investigated the effect of mRNA-VEGF@ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles on the repair of human brain microvascular endothelial cell (HBMECs) injury and its related mechanisms. mRNA-VEGF@USPIO nanoparticles were designed, prepared, and characterized using NTA and UV spectrophotometry. Cell viability was determined using the CCK-8. Cells in the control, TNF-α, and mRNA-VEGF@USPIO groups were sequenced and the differentially expressed genes (DEGs) were identified. Finally, a functional analysis of the DEGs was performed. Both NTA and spectrophotometry results indicated that mRNA-VEGF@USPIO was successfully constructed. TNF-α significantly reduced cell viability and promoted apoptosis compared with the control group (p < 0.05), whereas mRNA-VEGF@USPIO nanoparticles reversed the changes caused by TNF-α. Via sequencing, 9063 DEGs were identified between the control and TNF-α groups, 9125 DEGs were identified between the control and mRNA-VEGF@USPIO groups, and 211 DEGs were identified between the TNF-α and mRNA-VEGF@USPIO groups. Additionally, 71 overlapping DEGs were identified in the three groups using Venn diagrams. These overlapping DEGs were mainly enriched in cytokine-cytokine receptor interactions and the TNF signaling pathway, NF-κB signaling pathway, and NOD-like receptor signaling pathway. This study shows that mRNA-VEGF@USPIO nanoparticles can repair HBMECs injury.


Assuntos
Nanopartículas de Magnetita , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Necrose Tumoral alfa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dextranos/metabolismo , Células Endoteliais , Encéfalo/metabolismo , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...